您的位置:
網站首頁 >
新聞中心 >
行業動態 > 智能圖像處理有哪些功能對機器視覺系統有什么作用!
智能圖像處理有哪些功能對機器視覺系統有什么作用!
作者: 發布時間:2025-09-20 瀏覽次數 :0
機器視覺系統是通過光學裝置和非接觸傳感器自動地接受和處理一個真實場景的圖像,通過分析圖像獲得所需信息或用于控制機器運動的裝置,可以看出智能圖像處理技術在機器視覺系統中占有舉足輕重的位置。
智能圖像處理是指一類基于計算機的自適應于各種應用場合的圖像處理和分析技術,本身是一個立的理論和技術領域,但同時又是機器視覺系統中的一項十分重要的技術支撐。
具有智能圖像處理功能的機器視覺系統,相當于人們在賦予機器智能的同時為機器按上了眼睛,使機器能夠看得見、看得準,可替代甚至勝過人眼做測量和判斷,使得機器視覺系統可以實現高分辨率和高速度的控制。而且,機器視覺系統與被檢測對象無接觸,安全可靠。
智能圖像處理技術
機器視覺系統的圖像處理系統對現場的數字圖像信號按照具體的應用要求進行運算和分析,根據獲得的處理結果來控制現場設備的動作,其常見功能如下:
1、圖像采集
圖像采集就是從工作現場獲取場景圖像的過程,是機器視覺的第yi步,采集工具大多為CCD或CMOS照相機或攝像機。照相機采集的是單幅的圖像,攝像機可以采集連續的現場圖像。就一幅圖像而言,它實際上是三維場景在二維圖像平面上的投影,圖像中某一點的彩色(亮度和色度)是場景中對應點彩色的反映。這就是我們可以用采集圖像來替代真實場景的根本依據所在。 如果相機是模擬信號輸出,需要將模擬圖像信號數字化后送給計算機(包括嵌入式系統)處理。現在大部分相機都可直接輸出數字圖像信號,可以免除模數轉換這一步驟。不僅如此,現在相機的數字輸出接口也是標準化的,如USB、VGA、1394、HDMI、WiFi、Blue Tooth接口等,可以直接送入計算機進行處理,以免除在圖像輸出和計算機之間加接一塊圖像采集卡的麻煩。后續的圖像處理工作往往是由計算機或嵌入式系統以軟件的方式進行。
2、圖像預處理
對于采集到的數字化的現場圖像,由于受到設備和環境因素的影響,往往會受到不同程度的干擾,如噪聲、幾何形變、彩色失調等,都會妨礙接下來的處理環節。為此,必須對采集圖像進行預處理。常見的預處理包括噪聲消除、幾何校正、直方圖均衡等處理。
通常使用時域或頻域濾波的方法來去除圖像中的噪聲采用幾何變換的辦法來校正圖像的幾何失真采用直方圖均衡、同態濾波等方法來減輕圖像的彩色偏離。總之,通過這一系列的圖像預處理技術,對采集圖像進行加工,為體機器視覺應用提供更好、更有用的圖像。
3、圖像分割
圖像分割就是按照應用要求,把圖像分成各具特征的區域,從中提取出感興趣目標。在圖像中常見的特征有灰度、彩色、紋理、邊緣、角點等。例如,對汽車裝配流水線圖像進行分割,分成背景區域和工件區域,提供給后續處理單元對工件安裝部分的處理。
圖像分割多年來一直是圖像處理中的難題,至今已有種類繁多的分割算法,但是效果往往并不理想。近來,人們利用基于神經網絡的深度學習方法進行圖像分割,其性能勝過傳統算法。
4、目標識別和分類
在制造或安防等行業,機器視覺系統都離不開對輸入圖像的目標進行識別和分類處理,以便在此基礎上完成后續的判斷和操作。識別和分類技術有很多相同的地方,常常在目標識別完成后,目標的類別也就明確了。近來的圖像識別技術正在跨越傳統方法,形成以神經網絡為主流的智能化圖像識別方法,如卷積神經網絡(CNN)、回歸神經網絡(RNN)等一類性能優越的方法。
5、目標定位和測量
在智能制造中,z常見的工作就是對目標工件進行安裝,但是在安裝前往往需要先對目標進行定位,安裝后還需對目標進行測量。安裝和測量都需要保持較高的精度和速度,如毫米級精度(甚至更小),毫秒級速度。這種高精度、高速度的定位和測量,倚靠通常的機械或人工的方法是難以辦到的。在機器視覺系統中,采用圖像處理的辦法,對安裝現場圖像進行處理,按照目標和圖像之間的復雜映射關系進行處理,從而快速精準地完成定位和測量任務。
6、目標檢測和跟蹤
圖像處理中的運動目標檢測和跟蹤,就是實時檢測攝像機捕獲的場景圖像中是否有運動目標,并預測它下一步的運動方向和趨勢,即跟蹤。并及時將這些運動數據提交給后續的分析和控制處理,形成相應的控制動作。圖像采集一般使用單個攝像機,如果需要也可以使用兩個攝像機,模仿人的雙目視覺而獲得場景的立體信息,這樣更加有利于目標檢測和跟蹤處理。
以上內容是無錫精質今天分享的內容,無錫精質智能裝備有限公司是專業的機器視覺系統制造廠家成立16年來,一直致力于圖像技術及機器視覺技術的研發和制造,現有機器視覺系統高級研發人員,工業自動化工程師等70多名。 精質機器視覺公司的主要技術核心骨干人員來自于華為,比亞迪,富士康等制造業企業,具有多年的軟件設計,視覺及圖像比對技術,工業自動化等方面成熟經驗。